Radio astronomy experiments in the context of planetary science and exploration

L.I. Gurvits¹, S.V. Pogrebenko¹, G. Cimò¹, L.L.A. Vermeersen², T. Bocanegra Bahamon², G. Molera Calvés³ **D.A.** $Duev^4$, V.M. Gotlib⁵, A.S. Kosov⁵, V.M. Linkin⁵, A.N. Lipatov⁵, I.A. Strukov⁵, S.G. Turyshev⁶

¹Joint Institute for VLBI in Europe, Dwingeloo, The Netherlands;
² Delft University of Technology, Delft, The Netherlands;
³ Aalto University, Helsinki, Finland;
⁴ Moscow State University, Moscow, Russia;
⁵ Space Research Institute, Moscow, Russia;
⁶ Jet Propulsion Laboratory, Pasadena, CA, USA

IM-S3, IKI, Moscow 14 October 2010

How to make good of a source of RFI

Spacecraft (its state vector) as a measurable

- Usually not the case for other payload (excl. accelerometers)
- "Radio science" active AND passive
 - Two-way link is highly desirable
- "Radio astronomy" passive only
 - Might operate in an "open loop" scenario
- Both methods "intertwine" heavily with S/C radio system
 - Sharing on-board instrumentation possible

Require a very complex & expensive Earth-based segment

- Radio science: DSN-like facilities
- Radio astronomy: [networks of] radio telescopes

Radio experiments are multi-disciplinary!

Spacecraft tend to be radio loud... actually?

- Transmitter power 1 W
- Distance 5 AU (Jupiter)

- On-board antenna gain 3 dB
- Bandwidth 100 kHz

Operate at frequencies radio astronomers love (or hate): UHF (<u>400 and 800 MHz</u>), S (2.3 GHz), X (8.4 GHz), Ka (32 GHz)

Estimates of state-vectors of spacecraft:

- Need for "higher-than-standard" accuracy in special cases
 - Geodynamics and planetology
 - Trajectory measurements in close vicinity of Solar System bodies (e.g. landings)
 - Fundamental physics
 - Space-borne astrometry missions (e.g. GAIA)

Need for "eavesdropping" (sometimes, in desperation...)

Space exploration & radio astronomy: 53 years together

- Glorious start: Sputnik and 76-m Mk1 Jodrell Bank (now Lovell) telescope, 4 October 1957
- Parkes receives the first TV images of Appolo-11 on the Moon, 21 July 1969

ADU-1000, Evpatoria, Ukraine

Lovell 76 m, Jodrell Bank, UK

Parkes 70 m, NSW, Australia

- - Discovery of variability of extragalactic radio sources using deeps space communication antenna by G.B.Sholomitsky, 1965

Many faces of "space"-oriented radio astronomy

Space-based CMB experiments (Relikt, COBE, WMAP, Planck)

VLBI tracking of planetary missions

 Space-borne Ultra Long Wavelength Astronomy (f<10 MHz)

VLBI in Space

2010

Planetary Radio Interferometry and Doppler Experiment (PRIDE)

NASA's Mission:

To understand and protect our home planet

To explore the Universe and search for life

To inspire the next generation of explorers

solarsystem.nasa.gov

as only NASA can.

Generic PRIDE configuration

Generic PRIDE configuration

Planetary Radio Interferometry and Doppler Experiment

Huygens VLBI heritage: 20 photons/dish/s

- Ad hoc use of the Huygens "uplink" carrier signal at 2040 MHz
- Utilised 17 Earth-based radio telescopes
- Non-optimal parameters of the experiment (not planned originally)
- Achieved 1 km accuracy of Probe's descent trajectory determination
- Assisted in achieving one of main science goals of the mission – vertical wind profile

(Xp, Yp, Zp)

Fitan atmosphere turbulence signature

PRIDE-Mars vs Huygens VLBI tracking

Mission	Distance	Transmitter power/gain	Band	Time resolution	Delay noise	Positional Contacy Stateral)
	[AU]		[GHz]	[s]	84sj) [m]
Huygens VLBI	8	3 W / 3 dBi	2.0 (S)	re ill	15	1000
PRIDE- -Mars	1 10 10 dBi	A	N ^(S)	100	5	24
		8.4 (X)	10	3	14	
	· acc/		32 (Ka)	10	1	5

Conservative estimate, today's technology

- Minimal special requirements for the on-board instrumentation
- In-beam calibration can improve SNR further

Science case for generic PRIDE

Direct characterisation of the orbiter's and surface elements' signal by means of "VLBI tracking" and radial Doppler measurements

VLBI estimates of the S/C state vector

- Tidal deformations, seismology and tectonics of planetary bodies
- Gravimetry
- Atmosphere dynamics and climatology (if there is an atmosphere...)
- Input into fundamental physics measurements
- Radio occultation observations (e.g. In Martian ionosphere)
- "Cruise" science plus mission diagnostics ("health check")
- High degree of synergy with in situ measurements

Complementary to DeltaDOR measurements

plus

Direct-to-Earth (DtE) delivery of critical data (e.g. via SKA for EJSM)

Planetary science missions – PRIDE customers

O Phobos-Grunt (aka Phobos Sample Return): 2011

Gravimetry of

- ♦ Mars
- Phobos
- Need for precise S/C state-vector determination
- Phobos-Grunt equipped with USO – ideal for PRIDE
- X-band (8.4 GHz) signal

Origin of Phobos (by means of gravimetry)

+ Chinese Mars Satellite, YingHuo-1

ESA's Mars Express: a training target

e-VLBI data (512 Mbps) to Metsähovi in real time
SKA pathfinders talk to each other?

LIG

MEX Phobos fly-by 2010.03.03 seen by PRIDE

Power, relative to system noise

PRIDE 2010: Venus Express (results so far...)

ESA's Venus Express mission as a "training" target

Spectral power density of slow fluctuation phase turbulence below 10 Hz.

Molera, Pogrebenko et al., 2010 Participating stations: Medicina, Metsahovi, Noto, Wettzell, Yebes, Pushchino

24

Bit-error rate for EJSM-SKA DtE

BPSK

BPSK + error control coding

32-ary orthogonal Coherent modulation

30–50 bps with ~10⁻⁴ – 10⁻³ BER achievable Low-gain transmission, 1 – 3 W

Further details: Fridman et al., 2008, SKA Memo No. 104